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Independent Sampling of a Stochastic Process
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Abstract

We invmstigate when sampling a stochastic process X = {X(t) : t > O} at the times of

an independent point process, i, leads to the same empirical distribution as the time

average limiting distribution of X. Two cases are considered. The first is when X is an

asymptotically stationary ergodic process and ik satisfies a mixing and coupling condition.

In this case, the entire limiting distributions in function space are shown to be the same.

The second case is when X is only assumed to have a constant finite time average and 0

is assumed a positive recurrent renewal processes with a spread-out cycle length distribu-

tion. In this non-ergodic case, the averages are shown to be the same when some further

conditions are placed on X and 4.
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1. Introduction

Quite a bit of literature has been devoted to establishing that under suitable conditions, the time average

distribution of a stochastic process X = {X(t) : t > O} is the same as when averaging over the sampling

times of an underlying point process i = {t, : n > 0}. Formally this amounts to showing that for a set A in

the state space of X, 11 0
lim - I(X(s) E A)ds =lim E (X(t,) E A),

t-00 t 0n-. nfl=k= 1

where I(X(s) E A) denotes the indicator function for the event {X(s) E A}.

The main emphasis in the literature has dealt with the case when X and i are dependent; for example

when tn is the arrival time of the fth customer to a queueing system (with which each arrival interacts),

and X(t) is the state of the system at time t. The classic and fundamental result in this regard is PASTA

(Poisson Arrivals See Time Averages) (Wolff[13]) which states that under a so-called Lack of Anticipation

Property, sampling by a Poisson process does the trick. In such cases, path regularity assumptions (such as

left or right continuity) are placed on X because X(t,,-) need not be equal to X(t,+).

Many papers generalizing, extending and giving converses to PASTA have appeared in recent years,

giving rise to the general notion of ASTA (Arrivals See Time Averages) (Miyazawa and Wolff [10], Melamed

and Whitt[8],[91, Green and Melamed[5], Wolff[14], Konig, D. and V. Schmidt [6], Bremaud [2], Bremaud et.

al. [3]). Nevertheless, it seems that perhaps the easiest case has not been seriously studied: the case when X

and iP are independent (but not necessarily stationary).

The purpose of the present paper is to fill in this gap. We don't assume any path regularity assumptions

for X nor do we assume that X or 0 are stationary processes. The problem turns out to be more difficult

than one might expect. We consider two set-ups. In the first (section 2) X is assumed asymptotically

stationary ergodic (ASE) and 0 is assumed a point process that admits coupling to a stationary version

and is mixing. We show that the sampled process has the same limiting distribution (Theorem 2.1.). The

distributions we deal with are those in function space (not just the marginal distribution as in (1.1)). As

a corollary (Corollary (2.1)), it is seen that if X is ASE and 0 is a positive recurrent renewal process with

a spread-out cycle length distribution then the result holds. Finally, we give a general co'.verse that does

not require any further conditions (Theorem 2.2), and counterexamples (Remark(2.2)) showing that neither

a non-lattice renewal process nor a stationary one nor one with a smooth delay cycle is sufficient to obtain

Corollary (2.1).

In the second set-up (section 3) we are no longer interested in equating d:stributions as in (1.1) but only

the average of a real-valued process:

k1
lim- Xsd = iim - EX(tn). (1.1)

n--.oo ft --

For example, X could be of the form X(t) = I{Y(t) E A} where Y has a general state space and A is a

fixed set of states. Or X could be a deterministic real valued function X(t) = x(t) with a finite Cesaro
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limit. Therefore, in this case, X is not assumed asymptotically stationary ergodic. We assume, though, that

the point process is renewal with a spead-out cycle length distribution. A further moment condition is also

assumed.

2. The Asymptotically Ergodic Case and a General Converse

Let X = {X(t) : t > 0} be a st.,chastic process on some underlying probability space (i, B, P), with X(t)

taking values in the state space S (a measure space endowed with a-field F). We assume that X(t, w) (t > 0,

w E 1t) is jointly measurable and view X as a random element of the function space IC def SP+ endowed

with the product a-field.

We wish to sample X at the times of an independent point process 4 = {t, : n > 0}. To start with,

we assume that X and r are on the same probability space, and that 0 is simple, that is, that the t, are

strictly increasing (to infinity) as n--oo.

We view 4 as a random point measure on IZ+, where for any Borel set A C 1Z+,

O(A) = E I Et E A}. (2.1)
n=O

We let V'(t) df 0 ((0,t]) denote the associated counting process.

M denotes the space of all point measures, I = ts(.), that are bounded on compact intervals, equiped

with the iii topology (and associated Borel sets) defined via: Ia- as n--oo iff for each bounded continu-

ous function, f : R+----Z, with compact support, p (f)--*(f). This makes M into a complete separable

metric space (consult for example page 628 of Daley and Vere-Jones[4J). i is assumed a random element of

M.

For s > 0, 0. : K --# K denotes the shift operator (O.x)(t) = x(s + t), and it also will be used to denote

the shift on M; 0t4(A) = O(s + A).

We say that X is asymptotically stationary ergodic (ASE) with respect to the time shifts {0.}, if there

exists a limiting probability distribution,Q, on K in the sense that for all measurable sets A C K

Q(A) = lim 1 I(O. 0 X E A)ds, a.s.P. (2.2a)

The measure Q is necessarily stationary and ergodic with respect to the shifts and if X* denotes a process

with distribution Q, Q(A) = P(X* E A), then X* is a time stationary ergodic process.

ASE is equivalent to (2.2a) holding for all non-negative measurable functions f : K-4Z-+ (see page 101
of Loeve [71):

Q(f) = lno f(0, o X)ds; a.s.P, (2.2b)

and is also equivalent to: for all measurable sets AO, A

P(X E Ao)Q(A) = lim I IP(X E A., O.X E A)ds. (2.2c)
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ASE holds if (for example) X is positive recurrent regenerative or stationary ergodic or is a positive

Harris recurrent Markov process.

We say that 4' is mixing if for all Borel sets B0 and B,

P(P E Bo, 04' E B)--P(P E Bo)M(B), as s--oo, (2.3)

where M denotes a probability measure on M. Mixing implies ergodicity (via (2.2c)); so in particular M is

a stationary ergodic measure with respect to the shifts and letting 0* denote a random point process with

distribution M, 4 is stationary ergodic. It is easily seen that 0* is also mixing. A le EP*(1) denotes the

intensity of 4' which we assume is finite and non-zero.

We say that V' admits coupling to 0* if there exists versions of ?P and 4'* on the same probability space

together with a proper random time T such that 0o,? = 0.0*; s > T.

Theorem 2.1. Suppose X is ASE with limiting distribution Q from (2.2a). If r is independent of X and

is mixing and admits coupling to 0* then sampling by 7P leads to the same limiting distribution:

n
Q(A) = lim1 Il(0t, 0 X E A) a.s.P. (2.4)

n---* n

k=1

Proof: Consider the joint random element Z = (X, 4') on the product space K x M. It suffices to prove

the theorem for stationary version ip* = {t*}, for suppose (2.4) holds for (X, 4'*). Then by using the coupling

time T, we can define discrete random times S, 4ef min{n : tn > T}, and S2 4__ef min{n : t* > T}, and deduce

that ts+n = t*s2+n , n > 0, implying that (2.4) will hold for Z. For the rest of the proof, we assume that

1P = V¢*.

We shall first show that Z is jointly ASE with limiting distribution Q x M. This is equivalent to showing

that the stationary measure Q x M is ergodic and that for all measurable sets C in the product a-field (of

Kx M)

(Q x M)(C) = lim 'jP(O.(X, 4) E C)ds. (2.5)

To establish (2.5), define for each y E M the section A(y) = {(x, y) E K x M (x, y) E C}. Then by

Fubini's Theorem and independence, for each t

IP(oocx, 0) E C)ds = fMtJ PCO°X E A~y))M~dy).(26t j. M t

By the Dominated Convergence Theorem, (2.6) converges as t---+oo to

f Q(A(y))M(dy) = (Q x M)(C), (2.7)

the last step once again due to Fubini's Theorem.
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Q x M is indeed stationary, but to prove ergodicity (via (2.2c)), letting (X*, ik) have this joint stationary

distribution , it suffices to show (see Lemma 10.3.11, page 341 of Daley and Vere-Jones[4]) that for all

measurable cylinder sets (Ao, Bo), (A, B)
1 t

Q(Ao)Q(A)M(Bo)M(B) = lim I ItP(X* E Ao,0 8X* E A)P(IP E BO, 8  E B)ds. (2.8)

This follows easily from (2.3) and the ergodicity of Q.

Thus (via (2.2b) we have that for all measurable f K x M-Z+

(Q x M)(f) = lim1 f(0o o X)ds; a.s.P. (2.9)

In (2.9), choose, for fixed Borel set A, the function

f(X,t) = A ZI{Ot X E A}, (2.10)
n=0

so that the limit in (2.9) is

001)

(Q x M)(f) = E(f(X*, V)) = -E ,I{Ot X* E A} = Q(A), (2.11)
n --

the last equality due to the independence and stationarity of X* and ¢. Moreover,
t f OX .,d -ft P(8+1) 0(t+ 1) t

f(o X t d = 1 I{G, X E Alds =A-' 1  I{8O,X E A}]O Iftj E (s, s + 1I~ds. (2.12)

n=,P(s) n=O

The last integral tends to 1 as t--- oo and (tp(t + 1) - ¢(t))/t---0, so we obtain

Q(A) = lim A- 1 E I{Ot X E A}. (2.13)
t--oo t n=0

Since tP(t)/t--A, we finally obtain (2.4). U

A distributiun, F on R+ is said to be spread-out if for soni integer m > 1, the convolution F*--. * F,

m times, has an absolutely continuous component with respect to Lebesgue measure.

Corollary 2.1. Suppose Tr is a positive recurrent renewal process, independent of X and has a spread-out

cycle length distribution. Then if X is ASE with limiting distribution Q, (2.4) holds.

Proof: For each fixed t, let 't denote the a-field generated by the point measures restricted to [0, t]:

{fs(s) : s < t}. The spread-out condition is both the sufficient and necessary one for renewal process 1P

to admit coupling to a stationary version ¢* and do so for any initial condition of the form 0 E Ft. (an

immediate consequence of the corresponding result concerning the Markov process of forward recurrence

times for 10 (see for example Theorem 2.3, page 146 in Asmussen[1])). Similarly, from this, it also follows

that 0.0 converges in total variation to limiting distribution Nl egardless of such initial conditions (see

Corollary 1.5 page 142 of [1]). In particular, for each fixed measurable B, mixing condition (2.3) holds for

any B0 E Ut>0 1t. We can assume without loss of generality that ip is stationary (via coupling) and thus

since Ut>0 .Ft forms a semiring that generates the Borel sets of M, the proof is complete by Lemma 10.3.11

in 141. U
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We now consider the converse of Theorem 2.1 (i.e. we assume (2.4) and try to deduce (2.2a)) and find

that we do not need the mixing condition on 0 nor any ergodicity condition on X.

Theorem 2.2. If X is a stochastic process and -r is a point process independent of X that admits coupling

to a stationary version ip*, such that for some fixed measurable set A C 1C,
1n

lim 1Z I(Ot o X E A) = a a.s.P, (2.14)
k=1

with a a constant, then

lim 1 fl(o, o X e A)ds = a, a.s.P. (2.15)t-00 t .o

Proof: If (2.14) holds for (p, X), then it will also hold for (P*, X) by coupling V) to V*. Thus it suffices

to prove (2.15) in the stationary case. From (2.14) it follows that as t--oo

_ I(Ot oX E A)--*A\a a.s.P.
k=1

Since the summation is bounded above by the -t), which is Uniformly Integrable (UI) (due to stationarity),

t1fo 1(08 0X E A)ds = E{ t I(OoX E A)jX1--.Aa a.s.P

k=1

Dividing by A gives (2.15). U

Remark(2.1): Another way of understanding Theorem (2.1) is through Palm theory

Under the hypothesis of the theorem, the time stationary distribution of (X, V) is Q x M

and the sampled stationary distribution is the Palm distribution of Q x M (see for example

Rolskill1]) which in this case is precisely Q x M ° where M ° is the Palm distribution of

M. The Palm distribution is defined via

(Q x M)°(f) = A- 1 EQM Z f(6t X, Oti),
n=O

and denotes the limiting distribution obtained by averaging the distribution of (X, ip) over

all the sampling times tn. The Palm distribution is stationary ergodic with respect to the

shifts Ot,,; in particular, under MO, the interarrival times {tn - t,,-1 } form a stationary

ergodic sequence.

Remark(2.2): A non-lattice cycle-length distribution,F, is not enough to ensure Corollary

2.1 : Define a cyclic deterministic process X(t) = t - n; n < t < n + 1, (the fractional

part of t). Let A denote the set of irrational numbers in (0, 1) and take F to have mass

only on the rationals (with positive mass on each rational). Then the time average of

I{X(s) E A} is 1 but the sampled average is 0. In fact, when F is not spread-out, then
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by nnly smoothing out the first (i.e. the delay) cycle length (making it spread-out) or

ch,,sing a stationary renewal process, Corollary 2.1 once again is false: Break up 1Z+ into

the odd half intervals [n, n + 1/2), and even half intervals [n + 1/2, n + 1], n > 0, and

define X(t) to be 1 on the even ones and 0 on the odd ones so that the time average of

{X(s) = 1} is .5 a.s. For sampling, take a deterministic renewal process with interevent

times identically 1, but let t, have a Unif (0, 1) distribution (this results in making the

renewal process time stationary ). Then with probability .5, the event {ti 1 .5} will occur

in which case X(tn) = 0 for all n, giving the event average as 0 w.p. .5.

3. The Non-Ergodic Case With Renewal Sampling

In section 2 we assumed that X was asymptotically ergodic which then allowed us to use ergodic theory to

deduce our desired result. Suppose, however, that for a stochastic process X we only know that for some

fixed marginal Borel set A C S that

lim. i-tI{X(s) E A}ds = a, a.s.P. (3.1)

where a is a finite constant. X need not be AE to satisfy (3.1) so, in this section, we investigate sufficient

conditions ensuring that

a = lim _I{X(tk) E A} a.s.P, (3.2)
n-*oo

w -n ip is independent of X.

We shall actually be interested in obtaining the more general result of equating averages for a real-valued

process X. In this case

a = lim I X(s)ds, a.s.P, (3.3)

is assumed to exist and we wish to give sufficient conditions ensuring that

in
a = lim - X(tk) a.s.P. (3.4)

n --00O

Whereas one would expect (3.4) to hold under fairly general conditions, we no longer have ergodic theory

at our disposal and hence must resort to a different approach which for us requires from the start assuming

that ip is renewal with a spread-out cycle length distribution. Let T denote a generic cycle length.

Theorem 3.1. Suppose X = {X(t)} is a jointly measurable bounded process for which (3.3) holds for

finite constant a. If 0 is a renewal process independent of X, with a spread-out cycle length distribution,

satisfying ET1 +' < o, for some f > 0 then (3.4) holds.
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Proof: Assume supt X(t) < M < oo, and Let 7" denote a time stationary version of ?P (to which, due to

the spread-out assumption ip admits coupling). It suffices to show that

\C = lim X(t*) a.s.P. (3.5)
k=1

Let U(t) = EO(t) denote the renewal measure for V). First observe that
ip(t)

E E X(t) =fo EX(s)Ek*(ds) = A fo EX(s)ds, (3.6)
k=1

and that similarly (see page 136 of Daley and Vere-Jones[4])

'() = ot  /t t-"E{ =,X(t )} 2 
- EX 2 (s)ds + 2AE X(s + u)U(du)X(s)ds. (3.7)

k=1 J01 o

Consequently

, 't) f A ft ft-o

Vat{ Z X(tZ)/t} = - Jo EX 2 (s)ds + 2- E Zo f X(s + u)(U(du) - Adu)X(s)ds
k= 1 tO JlO (3.8)m 2  

A2 M 2 
ft Lt-J

A- + 2 o -t (IU(du) - AduI(k + [0, 1j)).

Using the hypothesis that ET 1+ < 0, we apply Theorem 1 of Stone and Wainger[12] to deduce that the

last integral in (3.8) reduces to
t t-Mj1o : o(k-')ds,, (3.9)

k=O

yielding (after integration)

O*(tM 2  A2 M 2

Var{ 1 X(tk)/t} < \- + 2-2--(t (3.10)
k=1

and finally

Var{ X(tk)/t} = O(t). (3.11)
k=1

Using the susequence s, n? in (3.11) we therefore obtain

Var{ k x(t,)ls,}=o(- ). (3.12)
k=1

Applying Chebychev's inequality while using Borel-Cantelli, yields

, x(t')- A -J EX(s)ds--.O, a.s. (3.13)
k=1 0
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as n---oo. By bounded convergence,- fo" EX(s)ds-a, hence by (3.13)

S1 X(t*)-a a.s. (3.14)

k=1

Let n(t) denote the (deterministic) counting process for {sn}. To prove (3.5) from (3.13), observe that

for any t, there exists an n(t) such that

n(t)2 " < t < (n(t) + 1)2/
,, (3.15)

so

1(t *)(t )) 1()I-[ _,X~t - - -dz. -~D _< - IX(t*)l + -- x(t*)I
k=1 tn(t) k= t n(t) k - k tn(t) k=V*(t,(,)+,)

<M *(t) [(n(t) + 1)2/e - n(t) 2/ f] 1 t()- *t) 1 n(t) 2/e + E~--- j- X(t*,)l,(3.16)
t n~t) n~t) (t (t) + I) k

the second to last piece of which tends to zero. But the same argument as used above can be used on I X(t)1,

implying that the last piece in (3.16) also tends to zero and thus proving (3.5). U

Remark(3. 1): If X is not bounded, then Theorem 3.1 may fail even for Poisson arrivals as

the following counterexample shows: Define X(t) = n2 for t E in, n + 1/n 2), X(t) = 0

otherwise. Then the limit in (3.3) is 1 whereas the limit in (3.4) is 0.

Remark(3.2): When X is a bounded process, then Theorem 2.2 extends to averages as in

(3.4).
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